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Note 

Nonlinear Transformations and the Numerical Treatment of Shocks 

In solving different equations, changes of dependent variables are often made 
to simplify the problem, or, as in [8], to ensure the positivity of these variables. 
However, for nonlinear hyperbolic equations such changes lead to different 
solutions when shocks are formed. In a previous paper [9], an analysis was made 
of the effect of such nonlinear transformations on numerical solutions computed 
by the Lax-Friedrichs method, via the “modified equation” approach [l, 71. 
For the L-F scheme, which is of first order accuracy, it was shown that, if the first 
term in the truncation error is properly taken into account when a nonlinear change 
of dependent variables is made, the weak solution of the original equations is 
preserved. 

The essence of the modified equation method is the following. 
One finds another differential equation which is solved by the difference scheme 

to a higher order of accuracy than the original equation. The modified equation 
then consists of the original equation plus terms involving increasing powers of 
the grid size. 

Thus, for the Lax-Friedrichs scheme the first extra term gives a differential 
equation solved to second order accuracy. This term involves derivatives up to 
second order multiplied by d t; when linearized, it becomes a linear parabolic term. 

When investigating second order accurate schemes, such as Lax-WendroE’s 
[3], one finds that, in order to obtain an analogous parabolic term in a linearized 
analysis, it is necessary to include two truncation terms, one with dt” and one with 
dta. This would lead one to expect that both terms must be taken into account, 
if one wants to make a nonlinear transformation and still obtain the original weak 
solution. However, the investigation described here reveals that it is sufficient to use 
the first term. This indicates that the true effects of the terms are not completely 
revealed by a linearized analysis but are influenced strongly by their nonlinear 
structure. This point is further reinforced by an examination of the first term itself, 
before and after the transformation. The difference between the two consists of 
two nonlinear expressions of apparently dissimilar character, as specified below. 
It is shown that both of these significantly influence the behavior of the shocklike 
discontinuities. 

As a typical problem, we consider the equation 

$+$&)=o, (1) 
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with initial data of the form 

x ,< -1, 

24(x, 0) = qqx) = -1 <x<o, 
0 <x < 1, (2) 

1 <.s, 

with constant c > 1. 
These initial data were chosen because the solution can be obtained analytically 

and consists of a rarefaction wave (classical behavior) followed by a compression 
wave from which a shock is formed at t = l&c - I). 

Specifically, the analytic solution is given by 

lc, x<ct--I 
(c - 1) x - 1 et--l<x<t 

u(x, t) = 1 ;; 1;;: ; ; ’ O<f<i c-l (34 

(c-l)t+1 ’ 
t,<x<ct+l i continuous 1 

b cr+l<x 
and 

where X,(t) is the trajectory of the u-shock which is obtained from the Rankine- 
Hugoniot relation and is given by 

X,(t) = ct + 1 - [2(c - 1) 1 + 2]1/2. (3c) 

As our nonlinear transformation, we chose v = u2, which, when applied to (I), 
leads to 

g + g (5 v3/2) = 0, 4(x, 0) = [d<dl”. (4) 

Before shock formation, the exact solution for v is u2(x, t), with u given by (3a), 
and, after shock formation, 

C2, x < Xs(t) 
1’ = 

[ 
(c-1)x+1 2 

I (c-1)t+1 ’ Xs(f) < x < ct + 1 

C2, ct+1<x 
(d&:j ’ (5a) 

where X, is the v-shock trajectory. 
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From the Rankine-Hugoniot relation, X*(f) is given by 

x, = czt + (cz - l)/(c - l), W-9 

where z is the middle root of the cubic equation, 

23 - 32 + 2 - (2/c3) * (2c + l)(c - l)Z/[(c - 1) t + l] = 0, (5c) 

obtained via Cardan’s formula. 
For a second order accurate numerical scheme, we chose the Lax-Wendroff 

method (see [5], p. 302), 

q+l = LAU’,n, 69 

for the differential equation wt + f(~)~ = 0. If rZ denotes the exact solution of the 
differential equation, then 

fqx, , fn+3 = Ll~(~j , GJ + At * ww, (7) 

where r = 2, since the scheme is of second order. 
The moditied equation for d can be obtained by adding terms to the differential 

equation which, when combined with (6), will give an equation analogous to (7) 
with r > 3. For r = 3, the modified equation turns out to be 

This formula is valid for the scalar case and for special systems in which a is a 
matrix which commutes with its derivatives. Otherwise, the right-hand side of (8) 
contains extra terms which are also O(dt2) (see [6]). 

Application of (8) to the u and u equations yields 

ut + (u2/2)% = (dt2/6X2)[~(h2~2 - 1) uzrr + 3(3h2u2 - 1) uaI,, + 6h2~~z3], (9) 

and 

ut + ($L+/~)~ = (dt2/24X2)[4u’12(X% - 1) t’,,, + 6~-~/~(3h~v - 1) v,u,, 
+ ?r3/2(3h% + 1) t&3]. (10) 

However, if the transformation u = u2 is now applied to (9), the result is the 
equation 

ut + (#uS12)z = (dt2j24P)[4u112(h2u - 1) uzzr + 12X2u1/2u,uzz]. (11) 

Note that the right sides of (10) and (11) are not the same. They agree with respect 
to the uzzz term (which would have been predicted by a linearized analysis), but 
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differ in the nonlinear lower derivative terms. Equations (9) and (IO) are the 
equations whose solutions the L-W scheme approximates to one higher degree 
of accuracy than the original ones. When dealing with solutions which include 
shocks, the two will not agree, after the time of shock formation. When computing 
with schemes which can handle shocks, such as Lax-WendroIT’s, the numerical 
procedure gives, in every case, the corresponding but different shock solution. 

Now suppose a correction term is added to the numerical scheme for L’ such that 
(ll), rather than (lo), becomes the equation which is approximated to the next 
higher order of accuracy. Then, as will be demonstrated, the square root of the 
numerical solution for the equation with this correction term agrees with the 
solution for u, ecen after a shock is formed. The correction term is the difference 
between the right sides of (11) and (lo), i.e., 

D = (&*/24X*)(~~/~~“‘“)[6(1 - hc’) w,, - (1 + 3h*u) P,*]. (12) 

The significant fact here is that a proper correction is achieved with the use 
of only the first term in the truncation error, while one might have supposed that 
two terms would have been necessary. 

The reason for at first believing that two truncation terms would be needed is 
that, in linear stability analysis, both terms are needed to obtain an expression 
which may be considered dissipative (see [5, pp. 330-3321). In the Lax-Friedrichs 
scheme, the first term is already dissipative [9]. 

The fact that a proper correction will be obtained here with only one term 
indicates that the effects of transformations on the computation of solutions 
with shocks are genuinely nonlinear, since D = 0 in a linearized analysis. More- 
over, the nature of the linearized terms in the truncation error (dissipative, disper- 
sive), while of importance in stability considerations, does not seem to be important 
here. This can be seen by the fact that in the Lax-Friedrichs case, the first term is 
dissipative, while for Lax-Wendroff, it is (-dt2/6h2)(1 - Pa*) aw,,, , which is 
dispersive. 

It is worth noting that the same expression is obtained as the linearized first 
truncation term in every explicit three-point second order accurate scheme (see [4]). 

The following results were obtained on the computer. 

(i) The Lax-Wendroff numerical solution for the u-problem (1) with (2), 
and a computation of the analytical solution (3) for comparison; 

(ii) The square root of the numerical solution for the tl-problem (4), and 
also the square root of the corresponding analytical solution; 

(iii) The square root of the numerical solution for the v-problem, with the 
correction term D given in (12), properly discretized. 
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These programs were run with various values of c > 1. 
It was found, for(i) and (ii), that the respective numerical and analytical solutions 

gave excellent agreement, before and after shock formation. Also zN2 and u 
agreed up to the time of formation of the shock, i.e., t, = I/(c - 1). Then, as 
expected for t > t, , the u-shock traveled faster than the u-shock. Thus, the scheme 
in each case produced the solution appropriate to the dependent variable used, 
in accordance with the theory of weak solutions. 

In (iii), the numerical solution agree with (i) and (ii) up to the time of shock 
formation, t, . For t > t, , this numerical solution agree with the numerical 
solution for ZJ in (i), thereby demonstrating that a full correction is obtained in 
the manner described above (compare Fig. 1 with Fig. 3). 

A few typical plots illustrating these results are shown in Figs. 1-3. In these 
plots c was taken to be 6, dx = 0.04, and At = 0.006, which is 0.9 times the 
maximal stable time step. 

e- 

c2 
I I I I I1 I I I I I I I I I 

0 2 4 6 8 IO 12 14 
x 

FIG. 1. The numerical solution (solid line) and the analytical solution (dashed line) for u, 
after 320 time steps. The shock is at X, = 7.9. 

x 

FIG. 2. The square root of the numerical solution (solid line) and of the analytical 
(dashed line) for U, after 320 time steps. The shock is at X, = 8.4. 
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FIG. 3. The square root of the numerical solution (solid line) for v, obtained wifh the correc- 
tion term, and the square root of the analytical solution (dashed line) for the original v-problem 
(given by (6)). The numerical shock here is at X, = 7.9. 

Writing D = D, + D, , where 

DI = (dt2/4A2) +/“(I - h2v) v,v,, , D, := -(dt2/24h2) r3/“(1 + 3h2u) cz3, (13) 

we also investigated the effects produced by D, and D, above. It was found that 
the desired correction is obtained by the combination of the two and that both 
terms, D, and D, , are significant. 

On the basis of ideas obtained from linear analysis, D, and D, appear to be of 
quite different natures. One is tempted to call D, “dissipative” and Dz “dispersive.” 
However, the work here indicates that the true state of affairs is genuinely nonlinear 
and such descriptions may be too simplistic. In this regard, Kreiss and Oliger [2], 
in discussion numerical solutions of nonlinear equations, state “computational 
difficulties are apt to be wrongly ascribed. This can easily lead to a large and 
incorrect folklore which can steer future research in the wrong direction.” 

If some physical dissipation is included, then discontinuous solutions do not 
arise and a change of variables is permissible. However, if numerical diffusion-like 
terms are subtracted in order to sharpen up the results, an incorrect solution may 
arise since small alterations of the truncation errors can produce qualitative changes 
in the solution. 

1. C. W. HIRT, J. Computational Phys. 2 (1968), 339. 
2. H. KREISS AND J. OUGER, “Methods for the Approximate Solution of Time Dependent 

Problems,” GARP Publications Series No. 10, Geneva, 1973. 
3. P. LAX AND B. WENDROFF, Comm. Pure Appl. Math. 13 (MO), 217. 
4. A. LERAT AND R. PEYRET, C. R. Acad. Sci. Paris 276 (1973), 759. 
5. R. RICHTMYER AND W. MORTON, “Finite Difference Methods for Initial Value Problems,” 

Interscience, New York, 1967. 



NONLINEAR TRANSFORMATIONS 235 

6. B. VAN LEER, Ph.D. Thesis, Leiden University, Netherlands, 1970. 
7. R. F. WARMING AND B. J. HYETT, J. Computational Phys. 14 (1974), 159. 
8. J. P. WRIGHT, in “Proceedings of the Third International Conference on Numerical Methods 

in Fluid Mechanics” (July 1972), Vol. I, p. 169. 
9. G. ZWAS AND J. ROSEMAN, J. Computational Phys. 12 (1973), 179. 

RECEIVED: February 20, 1975; REVISED April 7, 1975 

JOSFPH ROSEMAN 
AND 

GIDEON ZWM 

Department of Mathematical Sciences 
Tel-Aviv University 
Ramat-Aviv, Israel 


